

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

END SEM May 2019 Examinations

Program: Civil Engineering

Course Code: PCBTC407

Course Name: Soil Mechanics

Duration: 3hr

Maximum Points: 100

Semester: IV

Instructions:

1. Question No. 1 is compulsory; attempt any 4 questions out of remaining 6 questions.

2. Neat diagrams must be drawn wherever necessary.

3. Assume Suitable data if necessary and state it clearly

Q. No.		Questions	Points	со	BL	PI
	а	A sample of saturated cohesionless soil tested in a drained triaxial compression test showed an angle of internal friction of 30 degrees. Calculate the deviatoric stress at failure for the confining pressure of 200 kpa.	3	CO2	BL3	1.3.1
1	ъ	Describe briefly each type of soil structures with neat sketches.	6	CO1	BL2	1.3.1
	С	A soil has a liquid limit of 27% and a flow index of 12.5%. If the plastic limit is 17%, determine the plasticity index and toughness index. If the water content of the soil in its natural condition in the field is 20%, find the liquidity index and the relative consistency.	6	CO2	BL3	1.3.1
	d	Write down the advantages of Direct shear test.	5	CO2	BL2	1.3.1
	a	Discuss the use of soil classification in Geotechnical Engineering.	6	CO1	BL2	1.3.1
2	b	For saturated soil of mass 1.540 kg determine water content, void ration and dry density if oven dried mass is 1.020kg. The volume of the wet soil is known as 945ml	6	CO2	BL4	2.1.3
	С	Determine the coefficient of permeability for uniform sand for which sieve analysis indicated that D ₁₀ size is 0.12 mm	2	CO2	BL3	1.3.1
	d	Derive expression for the torque at failure in case of vane shear test when only one portion of vane take part in shearing.	6	CO1	BL1	1.2.1

													,
	a	Results of soil are g			the	siev	e ana	lysis (of the	8	CO2	BL4	2.1.3
		aw the p	article	size o							ne the e	ffective	e size,
			(mm)		2.4	1.2	0.6	0.3	0.15	0.075	Pan at the bottom		
3			Weight retained	of Soil (gm)	0.0	5.0	25.0	215.0	225.0	25	0.5		
		A compa		_					-			<u> </u>	
	b	its dry content.	density G= 2.6	degre 5.	e o	f sat	uratio	n an		7	CO2	BL2	2.1.3
	С	Discuss f								5	CO1	BL1	1.3.1
4	а	In a fall head cau 10 minu for the head cm ir area, cal	sing flotes. However, test to the second to the second to the second test test test test test test test tes	ow was ow much fall to 2 it and the c	50cr h tir 25 cr 50 c oeffic	n and me w n. If t cm² in	l it dr ould he so n cros	ops 5 be req il sam ss sec	cm in quired ple is tional	7	CO2	BL4	2.1.3
	b	Discuss with refer						ivestig	gation	8	CO4	BL6	1.3.1
	С	State the Theory.	ne as	sumptio	ons	mac	le B	oussir	nesq's	5	CO1	BL1	1.3.1
	а	Water pe 30 m lor founded water of seepage of Take K=	ng, 15n on an depth dischar	n wide imper 5m oi ge in m	and vious n on ³ /da	20m s stra ne sid	thick atum	. The and l	fill is nas a	7	CO2	BL3	2.1.3
	b	The stan				ion t	est re	sult a	re as	10	CO2	BL3	2.1.3
5		N	i	by dry w 8.30 10.50 11.30 13.40	eight		1 2 2 2 2	eight of soil (kN 9.8 1.3 1.6 1.2					
	Wa De	2.65,Plot ter contentermine O	nt v/s I MC an	Ory den d corre	spor	iding	MDD	. The	mater	ial ret	ained on	20mm	
	wh	ich was 9°						ivity o	overs		· · · · · · · · · · · · · · · · · · ·		1
	С	List the f								3	CO1	BL1	1.3.1
6	a	A series of	of shea	r tests v	were	perfo	rmed	onas	soil.	8	CO2	BL1	1.3.1
9	Ea	ch test wa	s carrie	ed out u	ıntil	the s	ample	shear	red an	d the p	orincipal s	stresse	s for

		h test were. Plot Mohr's circle and hence determine gle of internal friction.	strength	envelop	oe and	
		Test No. KN/m² KN/m² 1 200 600 2 300 900 3 400 1200				
	b	In consolidation test the void ratio of soil sample decreases from 1.2 to 1.1 when the pressure is increased from 200 to 400kN/m^2 . Calculate the coefficient of consolidation if coefficient of permeability is $8.0 \times 10^{-7} \text{ mm/sec}$.	8	CO2	BL3	2.1.3
6	С	Differentiate finite and infinite slope	4	CO1_	BL1	1.3.1
7	а	A concentrated load of 2500 kg acts on the surface of a homogenous soil mass of large extent. Find the stress intensity at a depth of 15 m (a) Directly under the load and (b) At a horizontal distance of 7.5 meters away from the axis of loading. Use Boussinesq's equation.	6	CO3	BL3	2.1.3
	b	Discuss sand boiling phenomenon	8	CO1	BL1	1.2.1
	С	Distinguish between Standard Proctor Test and Modified Proctor Test.	6	CO1	BL1	1.2.1

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

END SEM May 2019 Examinations

Program:

Civil Engineering

Duration: 3hr

Course Code: PCBTC407

Maximum Points: 100

Course Name: Soil Mechanics

Semester: IV

Instructions:

1. Question No. 1 is compulsory; attempt any 4 questions out of remaining 6 questions.

2. Neat diagrams must be drawn wherever necessary.

3. Assume Suitable data if necessary and state it clearly

Q. No.		Questions	Points	со	BL	PI
	а	A sample of saturated cohesionless soil tested in a drained triaxial compression test showed an angle of internal friction of 30 degrees. Calculate the deviatoric stress at failure for the confining pressure of 200 kpa.	3	CO2	BL3	1.3.1
1	b	Describe briefly each type of soil structures with neat sketches.	6	CO1	BL2	1.3.1
.	С	A soil has a liquid limit of 27% and a flow index of 12.5%. If the plastic limit is 17%, determine the plasticity index and toughness index. If the water content of the soil in its natural condition in the field is 20%, find the liquidity index and the relative consistency.	6	CO2	BL3	1.3.1
	d	Write down the advantages of Direct shear test.	5	CO2	BL2	1.3.1
	а	Discuss the use of soil classification in Geotechnical Engineering.	6	CO1	BL2	1.3.1
2	b	For saturated soil of mass 1.540 kg determine water content, void ration and dry density if oven dried mass is 1.020kg. The volume of the wet soil is known as 945ml	6	CO2	BL4	2.1.3
	С	Determine the coefficient of permeability for uniform sand for which sieve analysis indicated that D ₁₀ size is 0.12 mm	2	CO2	BL3	1.3.1
	d	Derive expression for the torque at failure in case of vane shear test when only one portion of vane take part in shearing.	6	CO1	BL1	1.2.1

	а		obtained given belo		ne siev	e ana	lysis (of the	8	CO2	BL4	2.Î.3
	Draw the particle size distribution curve and determine the effuniformity coefficient and coefficient of curvature of the soil.										ffective	e size,
			Mesh Op (mm)			0.6	0.3	0.15	0.075	Pan at the bottom		
3			Weight or retained(g	f Soil 0.0 m)	5.0	25.0	215.0	225.0	25	0.5		
		A compa	cted san	ple of s	oil witl	n bull	c dens	sity of				1
	b	its dry	³ has a v density G= 2.65.	degree					7	CO2	BL2	2.1.3
	С	Discuss:	flow net a	along wit	h their	prop	erties		5	CO1	BL1	1.3.1
4	а	In a fall head cau 10 minu for the h 10 cm in area, ca	ling head ising flow ites. How lead to fan height itended to toulate totand pipe	d perme was 50 much ill to 25 c and 50 the coef e=0.5 cm	eability cm and time w cm. If t cm² in ficient 2	test, l it dr ould he so l cros	the pops 5 be required in the same second in the sa	cm in quired ple is tional bility.	7	CO2	BL4	2.1.3
	b	Discuss with refe					ivestig	gation	8	CO4	BL6	1.3.1
	С	State theory.	he assu	amptions	mac	le B	oussir	nesq's	5	CO1	BL1	1.3.1
	а	30 m lor founded water of seepage		wide and mpervious 5m on o e in m ³ /o	d 20m us stra one sid	thick tum	. The and l	fill is nas a	7	CO2	BL3	2.1.3
	b	The stan			ction t	est re	sult a	ire as	10	CO2	BL3	2.1.3
5				sture Conte y dry weigh 8.30		pacted	eight of soil (kN 9.8					
			2	10.50			1.3					
;			3	11.30			1.6					
			5	13.40 13.80			1.2 0.8					
		2.65,Plot		_								
	Wa	ter conter	nt v/s Dr	y densit	y curve	, zero	air vo	oid cu	rve an	d 90% sat	uratio	n line.
		Determine OMC and corresponding MDD. The mater which was 9% was eliminated. Specific gravity of over-										
	, - -											
	_	List the f	factore of	fecting n	ermeal	oility			3	CO1	IBLI	1.3.1
6	c		factors af of shear 1				on a s	soil.	8	CO1	BL1	1.3.1

		th test were. Plot Mohr's circle and hence determine	strength	envelo	pe and	
	ang	gle of internal friction.				
		Test No. KN/m² KN/m² 1 200 600 2 300 900 3 400 1200				
	ъ	In consolidation test the void ratio of soil sample decreases from 1.2 to 1.1 when the pressure is increased from 200 to 400kN/m². Calculate the coefficient of consolidation if coefficient of permeability is 8.0 x 10 ⁻⁷ mm/sec.	8	CO2	BL3	2.1.3
6	С	Differentiate finite and infinite slope	4	CO1	BL1	1.3.1
7	а	A concentrated load of 2500 kg acts on the surface of a homogenous soil mass of large extent. Find the stress intensity at a depth of 15 m (a) Directly under the load and (b) At a horizontal distance of 7.5 meters away from the axis of loading. Use Boussinesq's equation.	6	CO3	BL3	2.1.3
	b	Discuss sand boiling phenomenon	8	CO1	BL1	1.2.1
	С	Distinguish between Standard Proctor Test and Modified Proctor Test.	6	CO1	BL1	1.2.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester - May 2019 Examinations

Program: Civil Engineering

Course Code: PC-BTC 406

Course Name: Transportation Engineering-

Duration: 3 Hour

Maximum Points: 100

Semester: IV

Notes:

Attempt any Five Questions

Figures to the right indicate full marks. Assume suitable data if necessary and state th

+1

%

-0.5

-0.5

+1

-0.5

-0.4

Q.No.			Ç	uestic	ns			Points	00	l Dr	1 ===
	Attempt:	any Fou	ır						CO	BL	PI
	a) Draw sleepe	neat sk rs. (5)	etch of				inctions of		4	3	1.3.1
1		ort. (5)			·	dvantage	es of air		2	2	1.3.1
1	transpo	ortation.	social (5)		econom		enefits of	20	1	2	1.3.1
	a BG a	ม เกe กบ เทd MG	mber of track of	sleeper. 1km ler	s require	d for co	sity (N+5), onstructing		4	1	1.3.1
	Covera	ge with:	neat ske	tch. (5)			and wind		3	1	1.3.1
2	(10)							20	2	1	1.3.1
	b) Discuss plannin	g and de	esigning	of airno	vet(10)	aircraf		20	2	2	1.3.1
	diagram	step by with fig	ಪեր թյվ ure. (6)	ocedure	to draw				3	2	1.3.1
	b) Describe	the var	ious sys	tems of	aircraft	oarking.	(6)	-	3	3	1.3.1
3	c) Design a	in exit t	axiway	which jo	oins a ru	nway ar	nd a main	-	1		1.5.1
	paranen	taxiway.	The to	tal angle	of turn	ing is 30	$)^0$ and the	20			
	turn off sall the de	speed is	80kmpl	1. Draw	a neat sl	cetch and	d indicate		3	5	2.1.3
	a) The len	gth of t	he runv	vay und	er stand	ard cond	ditions is				
4	above N	Airport MSL. A te the c	irport rected	provide eference	d at an e temper	levation	of 410m 32° C. for the				
"	Chainage	0 to	300	900	1500	1800	2200	20	3	5 2	2.1.3
	(m)	300	to 900	to 1500	to 1800	to 2200	to 2600				
- 11	Gradient	+1	-0.5	0.5		2.4			1		

	b) Enlist various runways marking and explain any two with neat sketch. (6)		3	2	1.3.
	c) Enlist various imaginary surfaces any explain any one with neat sketch. (4)		2	2	1.3.1
5	a) A 5° BG branch line track takes off from a main line track of a 3° curvature. Due to the turnout, restricted speed on the branch line is 25 km/h. calculate the negative super elevation to be provided on the branch line track and the maximum permissible speed on the main line track. (10)	20	5	5	2.1.3
	b) Briefly discuss conning of wheels and tilting of rails. (5)		4	2	1.3.1
	c) State the characteristics of good ballast material. Explain any two ballast materials used in India with advantages and disadvantages. (5)		4	2	1.3.1
	a) Draw and discuss all the necessary elements of a RH turnout. (8)		5	3	1.3.1
6	b) Draw a neat sketch on a turnout showing lead and radius as per Cole's method and Calculate the curved lead, switch lead, lead and radius of a 1 in 8.5 BG turnout for 90 R rails using Cole's method. Take heel divergence 13.5 cm (7)	20	5	5	1.3.1
	c) Enlist various types of yards and explain marshalling yard in detail (5)		5	2	1.3.1
7	a) Calculate the superelevation, maximum permissible speed, and Transition length for a 2° curve on a high-speed BG section with a maximum sanctioned speed of 110 km/h. Assume the equilibrium speed to be 80 km/h and the booked speed of the goods train to be 40 km/h. (10)	20	5	5	2.1.3
	b) Define creep and explain various theories of creep. (5)		4	1	1.3.1
	 c) Draw a neat sketch showing various runway patterns and differentiate between parallel and intersecting runways. (5) 		3		1.3.1

- 5

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester Examination May 2019

Civil Engineering

Max. Points: 100

Class: S.Y. (Civil), Semester: IV

Name of the Course: Hydraulic Engineering

Duration: Three Hours

Program: U.G. (B. Tech. Civil)

Course Code: PC-BTC405

Instructions:

i. Attempt Any Five questions

ii. All questions carry equal marks

- iii. Answer to each question to be started on the fresh page
- iv. Assume suitable data if necessary and mention it clearly.
- v. Draw neat diagrams and indicate it clearly.

Q. No.	Questions	Points	со	BL	PI
1	(a) Discuss hydraulic model testing, laws of similarities, distorted and undistorted models in dimensional analysis and highlight the importance of scale effects in hydraulic model testing.	10	CO4	BL2	1.1.2
	(b) The rate of flow 'Q' over a triangular notch is found to depend on the head of water 'H' above the vertex, the density 'ρ', the kinematic viscosity 'u', the surface tension 'o' of the fluid, 'θ' the angle of the notch and 'g' the acceleration due to gravity. Express a rational relationship for 'Q' in terms of other variables given. Use any one method of dimensional analysis.	10	CO4	BL4	4.1.4
2	(a) Explain the phenomenon of water hammer flow in pipelines and show pressure variation for full length of pipe w.r.t. to time. Discuss elastic pipe theory and rigid pipe theory.	10	COI	BL2	1.1.2
	(b) A siphon of length 800 m has its vertex 6 meters above the water level in the upper reservoir. The length of inlet leg of				
	siphon is 200 m and total head loss in siphon is 20 m. Determine diameter of the siphon such that pressure at summit does not fall below vapor pressure of water. Take f = 0.021.	10	COI	BL4	2.4.1
3	(a)Show that the efficiency of a free jet striking normally on a series of flat plates mounted on the periphery of a wheel can never exceeds 50%.	10	CO2	BL4	1.2.1
	(b) A jet of water moving at 20 m/sec impinges on a symmetrical curved vane shaped to deflect the jet through 120° such that the vane angles 'θ' and 'Φ' are each equal to 30°. If the vane is moving at 5 m/sec, find the angle of the jet so that there is no shock at inlet. Also determine the absolute velocity of exit in magnitude and direction and work done.	10	CO2	BL4	1.3.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

4	(a) A Pelton wheel develops 8000 kW under a net head of 130 m at a speed of 200 r.p.m. Assuming the co-efficient of velocity for the nozzle = 0.98, hydraulic efficiency = 87%, speed ratio = 0.46 and jet diameter to wheel diameter ratio = 1/9, determine (i) the discharge required, (ii) the diameter of the wheel, (iii) the diameter and number of jets required, and (iv) the specific speed. Assume mechanical efficiency = 75%.	10	CO2	BL5	2.2.3
	(b) A reaction turbine works at 450 r.p.m. under a head of 120 meters. Its diameter at inlet is 120 cm and the flow area is 0.40 m ² . The angles made by absolute and relative velocities at inlet are 20° and 60° respectively with the tangential velocity. Determine: (i) The volume flow rate, (ii) The power developed, and (iii) Hydraulic efficiency. Assume whirl at outlet to be zero.	10	CO2	81.5	2.2.3
5	(a)Explain characteristics curves of centrifugal pump: (i) Main characteristics curves, (ii) Operating characteristics curves, and (iii) Constant efficiency curves.	10	CO2	BL2	2.2.3
	(b) A centrifugal pump discharges 0.15 m³/sec of water against a head of 12.50 m the speed of the impeller being 600 r.p.m. The outer and inner diameters of impeller are 500 mm and 250 mm respectively and the vanes are bent back at 35° to the tangent at exit. If the area of flow remains 0.07 m² from inlet to outlet, Calculate (i) Manometric efficiency of the pump, and (ii) Vane angle at inlet.	10	CO2	BL5	2.2.3
6		05	CO3	BL2	2.1.2
	(a) Differentiate between; Prismatic and non-prismatic channel.				
	(b) Differentiate between flow through pipes and flow through channel.	05	CO3	BL2	2 .1.2
	(c) Classify types of flow in an open channel hydraulics.	05	CO3	BL2	2.1.2
	(d) Derive Chezy's equation for velocity of flow through an open channel.	05	CO3	BL2	2.1.2
7	/althorise an assumption for most connemical triangular channel				
	(a)Derive an expression for most economical triangular channel section and state the conditions for it.	10	CO3	BL4	1.2.1
	(b) Derive dynamic equation for gradually varied flow in case of a wide rectangular channel. Explain all the terms used.	10	CO3	HL4	4.1 4
*****			*****		******

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

END SEMESTER EXAMINATION

Program: B.Tech. in Mechanical Engineering Class: Second Year B.Tech. (Civil/Electrical)

Course code: MC-BT002

Name of the Course:Indian Traditional Knowledge

Date:May-2019 Duration: 3Hr. Max.Points:100

Semester: TV

Instructions: SolveANY FIVE Questions.

		Points	00	BL	PI	Module
Q.1	 a) Explain: India is the Richest Prize in the World in all respects. Justify: withsuitable examples. b) Justify: Nature never distinguished any other country so 	(10)	j 1	V	6.1.1	1
	completely a unit as India." in context of Fundamnetal unity of India since ancient timesgiving suitable examples.	(10)	1	V	6.1.1	1
Q.2	a) List: Names of The Vedas and Upvedas. Justify: "Vedas are the oldest and most valuable treasure of knowledge in the library of mankid".	(10)	1	I,V	6.1.1	2
	b) Explain: Importance of upvedas in indian tradition and knowledge system.	(10)	1	V	6.1.1	2
Q.3	a)Explain: With suitable one example each for thegreatness of ancient indian wisdom in science and spirituality.b) Explain: Co-existence of Science and Spirituality in India since	(10)	1,2	V	6.1.1	3
	ancient times with suitable examples and Justify: its relevance with modern times.	(10)	1,4	II,V	6.1.1	3
Q.4	a) Explain: Any two significant medical practices followed in ancient India.	(10)	2	II	6.1.1	4
	b) Define: Yoga. Justify: "Yoga is the key for long life with good health" in context of ancient as well as modern India.	(10)	2	I,VI	6.1.1	4
Q.5	a) Discuss: Any two significant art forms in ancient India and Any Two valuable contributions by ancient Indian artists for the development of these art forms.	(10)	3	VI	6.1.1	5
	b) Justify: Advancement of Civil Engineering, Architecture and Town Planning in ancient India with suitable examples.	(10)	2,3	V	6.1.1	5
Q.6		(10)	3	II	6.1.1	6
	b) Discuss: Work of Saint Dnyaneshwar and his contribution to Indian society as a Yogi, Saint, Linguist and Philosopher.	(10)	2,3	VI	6.1.1	6,7
Q.7	a) Discuss: Teachings of Bhagwan Gautam Buddha andits Importance in today's modern independent India.	(10)	3,4	V, VI	6.1.1	7

b) Justify: "Teachings of Ancient Indian Saints are the Pearl." Widom for the entire mankind." with context to Teachings Bhagwan Mahavir Vardhaman.	of (10)	3	V	6.1.1	7
---	---------	---	---	-------	---

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058. End Semester Examination, May- 2019

Q. P. Code:

Duration: 3 hour

Program: Civil

Course Code: PC-BTC-404

Max. Marks: 100

Semester: IV Class: S.Y.B.Tech.

Name of the Course: Surveying & Geomatics

Instructions:

1. Question No 1 is compulsory.

Attempt any four questions out of remaining six. 2.

Draw neat diagrams 3.

Assume suitable data if necessary 4.

	Question No. 1 (solve any five from a to g)	Points	CO	BL	PI
	(a) Explain working principle of digital Theodolite.	4	1	1	1.3.1
	(b) Highlight the significance of Laplace station in the	4	2	1	1.3.1
	triangulation system.				
Q1	(c) Explain the term phase of a signal.	4	1	2	1.4.1
Ų	(d) State the applications of Remote sensing.	4	3	2	1.4.1
	(e) Discuss the requirements of ideal transition curve.	4	2	1	1.3.2
	(f) What is Subtense Theodolite? Where it is used?	4	1	1	1.3.1
	(g)State the advantages and limitations of Photogrammetry.	4	2	2	1.4.1
	(a) A highway curve having a deflection angle of 78° is to be	07	1	2	2.3.2
	desire for a maximum sped of 120 km/hr, a maximum				
	centrifugal ratio of ¼ and a minimum rate of change of radial				
	acceleration of 0.3 m/sec ² /sec. the combined curve consist of				
	two cubic spirals and a circular curve. Calculate				
	(1) The radius of the circular curve				
00	(2) The length of the cubic spiral				
Q2	(3) The total length of the combined curve				
	(4) The chain ages of all salient points if the chain age				
	of the point of intersection is 3100m:				
	(b) Prepare the data necessary for setting out transition curve	08	2	2	212
	and central circular curve from above data using deflection	Uð	2	4	2.1.2
	angle method. (Assume peg interval of 30 m).				
	(c) Explain in brief working of Global Positioning Systems.	05	3	1	1.4.1
Q3	a) An upgrade of + 1.8 % meet with another upgrade of + 1.2	10	2	$\frac{1}{2}$	2.3.2
42	%. Determine the reduced levels of the various stations on the	10	4		4.3.4
	curve using chord gradient method. Assume rate of change of				
	grade to be 0.05% per 20 m chain and the chain age and				
	elevation of the point of grade separation are 1500 m and 360				
	m, respectively.				
	,,,·				

				ocedure for setting ethod.	g out cor	npound curve by	10	2	1	1.4.1
Q4	survey (i) Si (ii) Sc (iii) L (iv) fo (b) V vertice	ying. P ize of j cale (R ongitu cal ler Vhy pa al curv	repare photog (F.) = dinal c ngth (f) arabola e?	1 40 km X 25 km 2 flight plan from the graph-230mm X 23- 1:25,000; Average overlap — 60%, side 0) =152.3 mm; speed a is preferred inste	te following mm terrain he lap – 30 d of air cr ad of circ	ng data: eight = 480m %. aft = 220 km/hr ele for setting out	10 04 06	1 2	1 2	2.3.2 1.3.1 2.3.1
				u measure strength ntersect at a chaina			10	1	2	2.3.1
Q5	interso	ection nple c	between the between two between the betwee	en them is 130°. Enaving back tangening Rankine's meth	numerate t length =	the data required				
			-	u measure strength tote on axis signal o	_		05 05	1	1	1.3.1
	, , ,	-		eat sketch process of		sensing.	06	3	1	1.4.1
	, ,			f towers and signal			05	1 2	1	1.4.1
	having	g K=10	00 and	observations were C=0.2. Find the Reld vertical. Stadia readings			09	2	2	2.3.2
Q6	0	M	1.35	1.325 1.570 1.815	-3 ° 52'	RL of O = 165.50 m				
	0	N	1.35	2.225 2.540 2.855	+ 4° 32'					
	N	P	1.20	0.980 1.220 1.460	+ 5° 15'					
Q7	995m, elevat Deterr would	respeion of nine version the them.	ctively peak whethe	stations P and Q The distance of O M at a distance of O The Q is visible from P	Q from P of 35 km m P or N	is 105 km. If the from P, 301 m. Not. If not, what	10	3	2	2.3.2
				om r. f secondary triangu	lation		05	2	1	2.3.1
	, ,			ious applications of		ition	05	1	1	1.4.1

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to University of Mumbai)

Munshi Nagar Andheri (W) Mumbai 400058

End Semester examination May 2019

Max. Marks: 100

Duration: 3 Hrs

Class: S.Y. B. Tech

Semester: IV

Name of the Course: Environmental Engineering I

Program: B. Tech Civil

Course Code: PC-BTC408

Instructions:

Question one is compulsory

Attempt any four of remaining six questions

Draw neat sketches/diagrams wherever required

Assume suitable data if necessary and state them clearly

Figure on right indicate maximum points for the given question, course outcomes attained,

Bloom's Level and Performance Indicators

Q1	Fill in the blan	ıks					(20)	CO	BL	PI
(a)	1.	and a	re the coag	ulants used i	n water trea	tment.	(10)	1,2	2	1.2.1
	2.	and		are two	methods to	remove salts in				
	water tre									+
	3.	and		is used to	remove sal	inity in water.				
				o clean rapid						
	1	slow sand fil		•						
	5. Aeration	of water ren	noves	and		•				
(b)	Differentiate gr schemes. Draw					ter supply	(10)	1,2	2	3.2.1
Q2	Answer the fo				· ·		(20)			
(a)	Explain in deta pathogens after	Draw the flowsheet of conventional surface water treatment plant in detail. Explain in detail the function of each unit. The reductions of turbidity and pathogens after each unit should be mentioned. Explain additional units/treatment required to remove Iron and Manganese in the surface water						1,2,3	3,4	3.3.1
(b)	Explain per cap 1172. Explain	oita demand	and its com	ponents (var			(10)	1,2	3,4	5.3.1
Q3			· · · · · · · · · · · · · · · · · · ·							
(a)							(05)	1-3	4-5	3.4.2
	Year	1970	1980	1990	2000	2010				

(b)	Song River flows through Dehradun and it requires to be check for various parameters before being used as a water source. As a city engineer which tests are to be conducted to find the potability of water. Explain any five physical, chemical and biological parameters that should be found out.	(05)	1-4	4-5	6.3.2
(c)	A bell mouth canal intake is to be designed for Dehradun considering population obtained in Q3 (a) drawing water from a canal which runs for 10 hrs a day with a depth of 1.8 m. Calculate head loss in intake conduit if treatment works are 0.75 km away. Draw a neat sketch. Consumption of the town is to be considered 100 lpcd. Assume velocity through screens and bell mouth to be less than 16cm/sec and 32 m/sec. (V = 0.85 CR ^{0.63} S ^{0.54} Take C= 130)	(10)	1-4	3-4	4.3.1
Q4	Answer the following questions				-
(a)	Explain the following terms with typical values (i) Displacement efficiency (2) WLR (3) SOR (4) Filtration Rate (5) Temporal Mean Velocity Gradient	(10)	1-3	3-5	3.2.1
(c)	Explain process of ion exchange. Lime and soda were used for softening in Ranikhet for treatment of following impurities Ca SO ₄ = 200 mg/L; Mg(HCO ₃) ₂ = 220 mg/L; NaCl= 140 mg/L; Mg Cl ₂ = 300 mg/L. Compute the quantities of chemicals required for Dehradun in year 2040. Assume soda ash and lime purity 90%. (Consider data in Q 3(a))	(10)	1-3	3-4	3.2.2
Q5	Answer the following questions	(20)			
(a)	Explain the concept Ideal Settling Tank. Design ideal settling tank for the population for the year 2040 for Dehradun town having average water demand 100 lpcd.	(10)		2-3	2.2.1
(b)	Explain coagulation and flocculation. Design a paddle flocculator for Dehradun for 2040 with following details with average water demand as 100 lpcd: Detention time= 15 min; Average G= 70s ⁻¹ ; Speed of paddles = 3.5 rpm K=0.25; μ=1.0087X10 ⁻³ Ns/m ² ; ρ=998 kg/m ³ at 20°C; Ratio of L: B= 3.	(10)		3-4	3.2.1
Q6	Answer the following questions				+
(a)	Design rapid sand filter for (size, underdrainage system and wash water troughs) for the population for the year 2040 for Dehradun town having water demand 100 lpcd.	(10)		3-5	4.3.2
(b)	Explain the characteristic of a good disinfectant. Explain disinfectants used in water treatment. Find chlorine consumed in kg/day and chlorine dosage in mg/L for the city of Dehradun in 2040 if the residual chlorine is 0.2 mg/L and a chlorine demand is 0.6 mg/L and average water demand of 100 lpcd.	(10)		2-4	3.4.1
	Answer the following questions	(20)	-		
(a)	Explain with short notes (a) Odor and color removal by any three methods (b) Reverse osmosis	(10)	CO1 - CO4	1-2	4.2.3
(b)	(c) Ion Exchange Explain the problems related to water and water pollution in Mumbai city and give unique solution of the problems	(10)	CO2	2-3	2.2.3

Formula Sheet		
$P_{n} = P_{o} \left[1 + \frac{r}{100} \right]^{n}$ $P_{n} = P_{o} + n\bar{x} + \frac{n(n+1)}{2} \bar{y}$ $\log_{e} \left[\frac{P_{s} - P}{P} \right] - \left[\frac{P_{s} - P_{o}}{P_{o}} \right] = -kP_{s} * t$ $P_{n} = (P_{o} + n\bar{x})$ $r = \sqrt{r_{1} * r_{2} * r_{3} * \dots * r_{n}}$	Al=27 Ca=20 C=12 O=16 S=32 Cl=35.5 H=1 Na=23 Fe= 55.5 Mg=24 Si=14	WLR=Q/B WLR= Q/ 2π R DT= V/Q SOR= 12-20 m ³ /d/m ² V= 0.849 C R ^{0.63} S ^{0.54} Leq = L ₅₀ +{ (L ₁₀ - L ₉₀) ² / 60} NC = L ₁₀ - L ₉₀ SOR= 24-30m ³ /d/m ²
SA=volume/SOR	G =300-700s ⁻¹ 0.5 min to 1 min	$P=\frac{1}{2}C_d\rho. A_p. v_r^3$ $C_d = 1.8 \text{ for flat paddles}$ $\rho = 998kg/m^3$ $v_r = (1 - 0.25)v_p$
Ratio of length to diameter of lateral ≤ 60 Spacing of laterals= spacing of orifices= 150 to 300 mm Dia of perforations 5 to 12 mm (spacing 80 mm for 5 and 200 mm for 12mm) Total area of perforations≤ 0.5 Total c/s area of laterals Total area of perforation = 0.002 to 0.003 Entire filter area Area of manifold= 1.5 to 2 times laterals Rate of filtration = 300 to 500l/hr/m² Rate of filtration = 3000-6000l/hr/m² Max. demand= 1.8 Q	$v_{s} = \frac{1}{18} \frac{g}{v} (S_{s} - 1) * d^{2}$ Value of u=1.002X10 ⁻⁶ m ² /sec $v_{d} = \sqrt{\left(\frac{8\beta}{f'}\right) (S_{s} - 1) dg}$ $f' = 0.025 - 0.03$ $g=9.8m/s^{2}$	Q/A; Q/ perimeter; Q/b; V/Q V= D ² (0.011D+0.785H)
$G = \sqrt{\frac{P}{\mu * V}}$ $\mu = 1.0087 * 10^{-3} \text{Ns/m}^2$		$G * t = \frac{v}{Q} * \sqrt{\frac{p}{\mu V}} = \frac{\sqrt{\frac{pV}{\mu}}}{Q}$

ALL THE BEST

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Final exam - March 2019 Examinations

Program: B. Tech in Civil Engineering

Duration: 3 hours

Course Code: PC-BTC403

Maximum

Points: 100

Course Name: Concrete Technology

Semester: IV

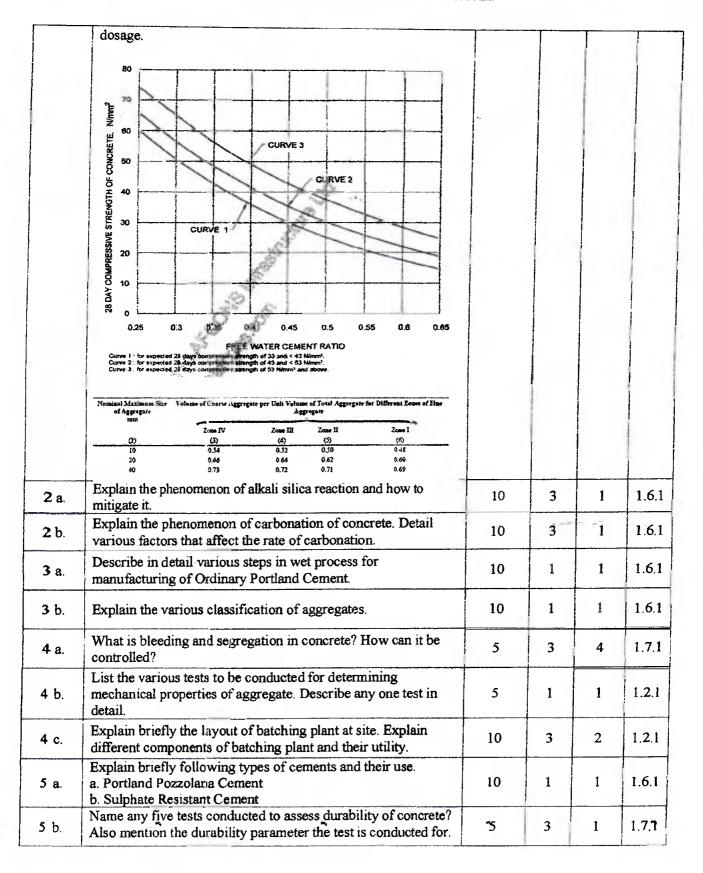
Notes: Answers to all sub questions should be grouped together.

Answer any 5 questions out of 7.

Figures to the right indicate full marks.

Assume suitable data, if necessary and state the same clearly.

Q. No.		Questions	Points	CO	BL	PI
	Determine the sieve analysis	fineness modulus and zone of sand as per the given below:				
	Sieve size	Weight retained (gms)				
	10 mm	0				
1a	4.75 mm	20	5	1	4	1.2.1
1 a	2.36 mm	100				
	1.18 mm	100				
	600 μ	190				
	300 μ	350				
	150 μ	170				
	Pan	35				1
16	Maximum size Minimum cent Maximum was Workability — Method of pla Specific gravit Specific gravit	rete - M45 ment - 65 MPa e of aggregate - 40 mm ment content - 350 kgs ter cement ratio - 0.45 120 mm cement - Pumpable ry of 40 mm aggregate - 2.73 ry of 20 mm aggregate - 2.72 ry of 10 mm aggregate - 2.70	15	2	4	1.2.

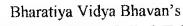


SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Final exam - March 2019 Examinations

SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai – 400058

Final exam - MAY 2019 Examinations

5 c.	What are mineral admixtures? Name four mineral admixtures and their sources.	5	1	1	1.6.1
6 a.	Why is curing of concrete important? Give four methods of curing in one sentence each.	5	3	2	1.6.1
6 b.	Specify the type of concrete to be used in the following situations: a Concrete used for pavements in building campus for maintaining the ground water table b. Build structure to cater to any severe impacts c. Eliminate expansion joints in bridges d. Support roof of tunnel during excavation e. Absorb radiation from nuclear reactors	5	2	4	1.7.1
6 c.	What are the typical situations where non-destructive testing may be useful? Explain any four NDT tests in one sentence each.	10	3	2	1.6.1
7 a.	Explain any four types of repair methods in brief.	10	3	1	1.6.1
7 b.	Explain the procedure for repair of cracks in concrete.	5	3	1	1.6.1
7 c.	Explain the advantages of using fibre reinforcement for strengthening of concrete structures. Explain the procedure for applying fibre reinforcement.	5	3	1	1.7.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations: May 2019

Program: B.Tech. in Civil Engineering

Duration: 3 Hours

Course Code: PC-BTC402

Maximum Points: 100

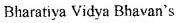
Course Name: Structural Mechanics

Semester: IV

1. Attempt any FIVE questions out of SEVEN questions.

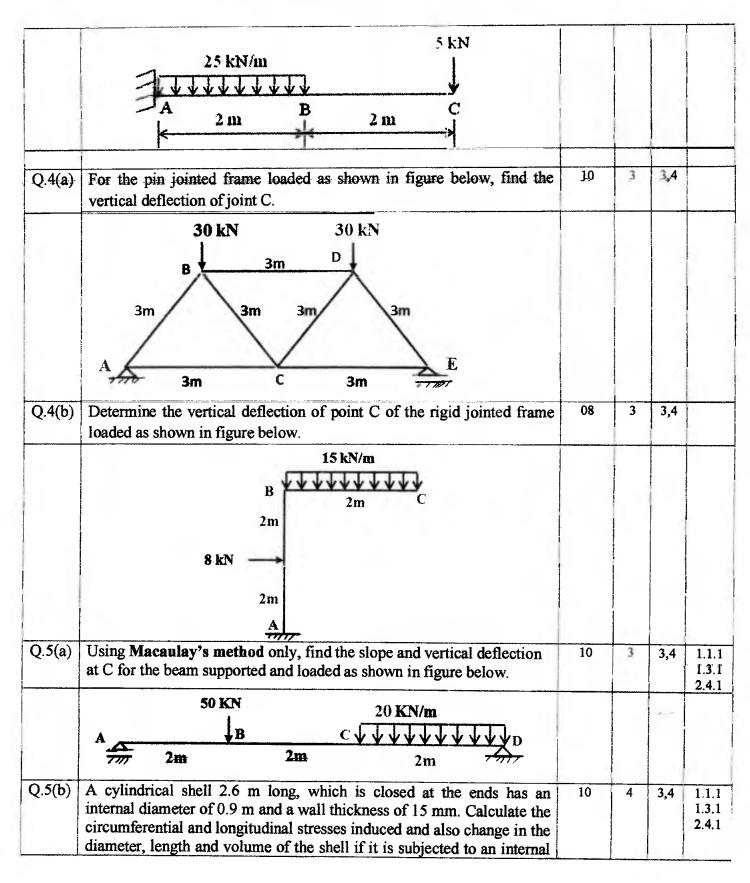
- 2. Answers to all sub questions should be grouped together.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data if necessary and state the same clearly.

Q.No.	Questions	Points	CO	BL	PI
Q.1(a)	A 10 m high masonry dam of trapezoidal cross section ABCD has the top and bottom widths of 1m and 6m respectively as shown in figure below. The dam retains water on its vertical face to a depth of 10 m. Determine the maximum and minimum stresses developed at the base of the dam. The unit weight of masonry is 22 kN/m³ and that of water is 10 kN/m³.	10	1	4	1.1.1 1.3.1 2.4.1
	6.0 m	9			
Q.1(b)	A cantilever beam of span 4 m, is subjected to a point load of 10 kN at an angle of 30° with Y axis as shown in figure below. The cross section of the beam is a rectangle of width 100 mm and depth 200 mm. Find the maximum bending moment and state its location. Show this moment vector in the cross section. Find the location of the neutral axis and show it in the cross section. Find the maximum and minimum bending stresses and state their location in the cross section.	10	1	4	1.1.1 1.3.1 2.4.1


SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations: May 2019



SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations: May 2019

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400)58

End Semester Examinations: May 2019

	pressure of 1.4 MN/m ² . Take E = 200 GN/m ² , μ = 0.3.	•	1		
Q.6(a)	A thin spherical shell 1m in diameter and 1.2 cm wall thickness is filled with a fluid at atmospheric pressure. Find the intensity of internal pressure developed in it if 175 cm ³ more of fluid is pumped into it. Also, calculate the circumferential stress at that pressure and the increase in diameter. Take $E = 200 \text{ GN/m}^2$, $\mu = 0.3$.	10	4	3,4	1.1.1 1.3.1 2.4.1
Q.6(b)	Compare the crippling loads given by Euler's and Rankine's formulae for a steel column 3.0 m long with one end fixed and the other end hinged (pinned). The cross section of the column is a symmetrical I section with the following dimensions. Top and bottom Flange width = 220 mm, Top and bottom Flange thickness = 20 mm, Depth of web = 350 mm, Thickness of web = 25 mm. Take E = 2x10 ⁵ N/mm ² , f _c = 350 MPa and Rankine's constant = 1/7000.	10	4	3,4	1.1.1 1.3.1 2.4.1
Q.7(a)	Locate the shear center for the thin walled symmetrical channel section shown in figure below. Thickness of flange and web = 10 mm.	10	4	3,4	1.1.1 1.3.1 2.4.1
	250 mm 10 mm 10 mm				
Q.7(b)	Locate the principal axes and find the principal moments of inertia for the angle section of thickness 10 mm shown in figure below.	10	1	3,4	1.1.1 1.3.1 2.4.1
	10 mm 150 mm 10 mm 10 mm				

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai - 400058.

May 2019

End semester examination

Maximum Points: 100

Duration: 3 hours

Class: S.Y.B.Tech

Semester: IV

Program: CIVIL

Name of the Course: Probability and Statistics

Course Code: BS-BTC401

Instructions:

Question Number.1 is compulsory.

Attempt any FOUR questions out of remaining SIX questions.

• Answers to all sub questions should be grouped together.

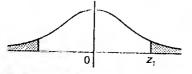
Answer to question should be written in detail.

Q			OUE	STION	S				POINTS	CO	BL	PI
1A)	Find the angle bet	ween			06	1	1	1.2.1				
1B)	The mean height	of rand The S	dom sa .D. of 1	mple of the sam	100 ii ple is	ndivid 10.Wo	ould it	be	06	3	2,3,4	2.4.1
1C)	reasonable to suppose that the mean of the population is 165? Twelve dice were thrown 4096 times and the number of appearance of "6" each time was noted.									2	2,3,4	2.4.3
	NO. OF SUCCESSES	0	1	2	3	4	5	6 & above				
	FREQUENCY 447 1145 1181 786 380 115 32 Fit a binomial distribution when the dice are unbiased.											
2A)	In an experiment following frequent 315 Round 101 Wrind 108 Round 32 Wrink According to his population 9:3:3 5% Los?	ncies ond and kled and and and led and theo	of seeds Yellow nd Yell Green d Green ry of h	s. v low n eredity	the n	umber	s shoi	ald be in		3	2,4,5	2.4.2
2B)	A manufacturer	linds t	hat the	average	dema	nd pe	r day f	or the	06	2	3,4,5	2.4.4

	mechanic to repair his new production is 1.5. Over a period of				
İ	one year the demand per day is distributed as Poisson				l
	distribution. He employs two mechanics. On how many days in				
	one year i) both mechanics would be free ii) some demand is				
	refused.				
2C)	An electric bulb manufacturing company produces bulbs having	08	2	2,3	2.4.3
	a life time which is normally distributed with mean 800 hours				
	and standard deviation 40 hours. Find i) the probability that a				
	bulb selected at random will have life more than 834 hours.				
	ii) The probability bulb lasts between 778 & 834 hours.				
	II) The producting data turns occurrent				
24)	The following data represents the biological values of protein	06	3	4,5,6	2.4.2
3A)	from cow's and buffalo's milk at a certain level.			'	
	COW MMR 1.02 2.02 1.03				
	Bullato's 2.00 1.05 1.05				
ļ	milk				
	Examine if the average values of protein in the two samples in	1			
	the two samples significantly differ.LOS 5%.	06	3	5.6	2.4.4
3B)	Two random samples gave the following data:	06	3	5,6	2.4.4
	Sample no. Size Mean Variance				
	1 8 9.6 1.2				
	2 11 16.5 2.5				
	Can we conclude that the two samples have been drawn from				
	the same normal population?LOS 5%.				
3C)	In an industrial complex, the average number of fatal accidents	08	2	2,3,4	1.4.1
,	ner month is ½. The number of accidents per month is				
	adequately described by a Poisson distribution. What is the				
	probability that 6 months will pass without a fatal accident?				
	production in the second secon				
4A)	In an examination marks obtained by students in mathematics,	06	2	3,4	2.4.3
4/1)	physics and chemistry are normally distributed with means				
	51,53 and 46 with standard deviations 15,12,16 respectively.				ļ
	Find the probability of securing total marks (i) 180 or more (ii)				İ
	90 or below.				
4D)	A man buys 100 electric bulbs of each of two well known	06	3	4,5	1.3.1
4B)	makes taken at random from stock for testing purpose. He finds				1
	that make "A" has a mean life of 1300 hours with a S.D. of 82				
	hours and make "B" has a mean life of 1248 hours with S.D. of	1			
	93 hours. Discuss the significance of these results.	1			
100	Calculate the correlation coefficient for the following data:	08	1	2,3	2.4.1
4C)			-	,-,-	1
	A / O / O O O O O O O O O O O O O O O O				
	Y 15 16 14 13 11 12 10 8 9				1
5A)	Fit a Poisson distribution for the following distribution	06	2	2,3,4	2.4.3
,	X 0 1 2 3 4 5 Total				
1		Ч			.1

		f	142	156	69	27	5		i	40	0				
5B)	Two car deck of	ds are	drawn	simul	taneou	sly fro	m a w	vell – e nun	shui	fleo	i aces.	06	1	4,5	2.4.4
	deck of	52 care	as. Co.	mpate	1	th the	101 til	ctand	ard o	lev	iation	08	1	2,3,4	1.1.1
5C)	If X & Y are random variables with the same standard deviation $V = V \cos \alpha + V \sin \alpha = V \cos \alpha + V \cos \alpha = V \cos \alpha + V \cos \alpha = V \cos \alpha + V \sin \alpha = V \cos \alpha + V \cos \alpha = V \cos \alpha + V \cos \alpha = V \cos \alpha + V \cos \alpha = $														
	σ and zero correlation then show that $U = X \cos \alpha + Y \sin \alpha$ & $V = X \sin \alpha - Y \cos \alpha$ have zero covariance.														
	V = Xs	$\sin \alpha -$	$Y \cos \alpha$	α nave	zero (covaria	mce.					 			
												06	2		1.1.1
6A)	A crv X	(has P	DF de:	fined a	s f(x)	$)=\left\{ rac{2\pi}{2} ight.$		$x \le 2$ $2 \le x$ $4 \le x$	≤4	.Fin	ıd				
						l	0,-	+ ≥ ∧							
	mean &	z varia	ince.							1		06	1	 	2.4.3
6B)	From the correlation	ie follo tion be	owing of	data ca x & y	lculate	e the co	oeffic:	ient o	ı rar	1K 		, 00	1		2.4.5
			55 49	1	43	37	43	49		0	20	<u> </u>			
	1		30 7	0 20	30	50	72	60		15	25				
6C)	The me	an cor	nsumpt	ion of	food g	rains a	mong	g 400	sam	ple	d	08	3	3,4	2.4.4
	The mean consumption of food grains among 400 sampled middle class consumers is 380 grams per day per person with a standard deviation of 120 grams. A similar sample survey of 600 working class consumers gave a mean of 410 grams with a														
	standard deviation of 80 grams. Are we justified in saying that														
	the difference between the averages of the two classes is														
	40?LOS 5%									06	1	2,5	2.4.1		
7A)										100	1	2,5	2		
	correlation coefficient. Candidates A B C D E F G H									ור					
)	idates		В		1	4	6	3		7	-{			
	Judge		5	2	8	3	2	8	1		6	= 1			
	Judge	; Y	4	5	7				1		<u></u>	1			
7B)	A mac standa	rd devi	claime iation o as their	of 0.45	cm.A	randor	m sam	iple o	f 10	0 na	ails		3	5,6	2.4.3
	, –		ify the		_	_		•							
7C)	1000 s	tudent	s are g	raded a	accord	ing to 1	their I	.Q. &	the	ir		08	3	4,5	2.4.4
			ndition								ner				
			ssocia												
	level o	-	,000 010												
	lever						ΙO					7		ł	
		Econ	omic	4			I.Q.								
ļ		Cond	litions	Hig	gh		Med	ium			Low				
1		Rich		160	0		300				140				
		Kich		100	O		į					11			
		Poor		140			100				160				

Percentage Points of χ^2 - Distribution


Example

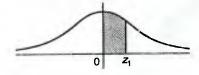
(111)

For
$$\Phi = 10 \text{ d. o. f.}$$

P($\chi^2 > 15.99$) = 0.10

ФР	0 = .99	0.95	0.50	0.10	0.05	0.02	0.01
1	.000157	.00393	.455	2.706	3.841	5.214	6.635
2	.0201	103	1.386	4.605	5.991	7.824	9.210
3	.115	.352	2.366	6.251	7.815	9.837	11.341
4	297	711	3.357	7.779	9.488	11.668	13.277
5	554	1.145	4.351	9.236	11.070	13.388	15.086
6	.872	1.635	5.348	10.645	12.592	15.033	16.812
7	1.339	2.167	6.346	12.017	14.067	16.622	18.475
8	1.646	2.733	7.344	13.362	15.507	18.168	20.090
9	2.088	3.325	8.343	14.684	16.919	19.679	21.666
10	2.558	3.940	9.340	15.987	18.307	21.161	23.209
						00.040	24,725
11	3.053	4.575	10.341	17.275	19.675	22.618	
12	3 571	5.226	11.340	18.549	21.026	24.054	26.217
13	4.107	5.892	12.340	19.812	22.362	25.472	27.688
14	4.660	6.571	13.339	21.064	23.685	26.873	29.141
15	4,229	7.261	14.339	22.307	24.996	28.259	30.578
16	5.812	7.962	15.338	23.542	26.296	29.633	32.000
17	6.408	8.672	16.338	24.769	27.587	30.995	33.409
18	7.015	9.390	17,338	25.989	28.869	32.346	34.805
19	7.633	10.117	18.338	27.204	30.144	3 3.687	36.191
20	8.260	10.851	19.337	28.412	31,410	35.020	37.566
21	8.897	11.591	20.337	29.615	32.671	36.349	38.932
22	9.542	12.338	21.337	30.813	33.924	37.659	40.289
23	10.196	13.091	22.337	32.007	35,172	38.968	41.638
24	10.856	13.848	23.337	32.196	36.415	40.270	42 980
25	11.524	14,611	24.337	34.382	37.652	41.566	44.314
26	12.198	15.379	25.336	35.363	38.885	41.856	45.642
27	12.879	16.151	26.336	36.741	40.113	44.140	46.963
28	13.565	16.928	27.336	37.916	41.337	45.419	48.278
29	14.256	17.708	28.336	39.087	42.557	46.693	49.588
30	14.953	1	29.336	40.256	43.773	47.962	50.892

Percentage Points of t- distribution


Engineering Mathematics - IV

Example

For $\Phi = 10$ d. o. f. $P(\mid t \mid > 1.812) = 0.1$

P	0.20	0.10	0.05	0.02	0.01	
1	3.078	6.314	12.706	31.812	63.657	
2	1.886	2.920	4.303	6.965	9.925	
3	1.638	2.353	3.182	4.541	5.841	
4	1.533	2.132	2.776	3.747	4.604	
5	1.476	2.015	2.571	3.3€5	4.032	
6	1.440	1.943	2.447	3.143	3,707	
7	1.415	1.895	2.365	2.998	3.499	
8	1.397	1.860	2.306	2.896	3.355	
9	1_383	1.833	2.262	2.821	3.250	
10	1.372	1.812	2.228	2.764	3.169	
11	1.363	1.796	2.201	2.718	3.106	
12	1.356	1.782	2.179	2.681	3.055	
13	1.350	1.771	2 160	2.650	3.012	
14	1.345	1.761	2.145	2.624	2.977	
15	1,341	1.753	2.131	2.602	2.947	
16	1.337	1.746	2.120	2.583	2.921	
17	1.333	1.740	2.110	2.567	2.898	
18	1.330	1.734	2.101	2.552	2.878	
19	1.328	1.729	2.093	2.539	2.861	
20	1.325	1.725	2.086	2.528	2.845	
21	1.323	1.721	2.080	2,518	2.831	
22	1.321	1.717	2.074	2.508	2.819	
23	1.319	1.714	2.069	2.500	2.807	
24	1.318	1.711	2.064	2.492	2.797	
25	1.316	1.708	2.060	2.485	2.287	
26	1.315	1.706	2.056	2.479	2.779	
27	1.314	1.703	2.052	2.473	2.771	
28	1.313	1.701	2.048	2.467	2.763	
29	1.311	1.699	2.045	2.462	2.756	
30	1.310	1.697	2.042	2.457	2.750	
40	1.303	1.684	2.021	2.423	2.704	
60	1.296	1.671	2.000	2.390	2.660	
120	1.289	1.658	1.980	2.358	2.617	
00	1.282	1.645	1.960	2.325	2.576	

Area Under Standard Normal Curve

The table gives the area under the standard normal curve from z=0 to $z=z_1$ which is the probability that z will lie between z=0 and $z=z_1$.

	z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
	0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
	0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
10	0.2	.0793	.8832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
1	0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	:1480	.1517
1	0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
١,	0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
•	0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549
4	0.7	.2580	.2611	.2642	.2673	.2703	.2734	.2764	.2794	.2823	.2852
1,	0.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
	0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
	1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
1	1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830
	1.2	.3849	.3869	3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
	1,3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
	1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
	1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
	1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4415	.4525	.4535	.4545
- 1	1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
ı	1.8	4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
- 1	1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
	2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
- 1	2.1	.4821	4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	4857
- 1	2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4841	.4884	.4887	.4890
	2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
	2.4	.4918	4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
	2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952
	2.6	.4953	.4955	.4956	4957	.4959	.4560	.4961	.4962	4963	4964
	2.7 •	.4965	.4966	.4967	.4968	4969	.4970	.4971	.4972	.4973	.4974
	2.8	.4974	.4975	4976	.4977	.4977	.4978	4979	.4979	.4980	.4981
	*2.9	.4981	4982	4982	.4983	.4984	.4984	.4 9 85	.4985	.4986	.4986
	3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990